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Ex 12.1 (An algorithm for Edelstein’s fixed point theorem)
We saw in the lecture that when (M,d) is a compact metric space and F : M → M satisfies
d(F (x), F (y)) < d(x, y) for all x ̸= y, then F has a unique fixed point x̄ ∈ M . Show that for
any x0 ∈ M the iteratively defined sequence xn+1 = F (xn) converges to x̄.

Solution 12.1 : It suffices to show that every subsequence contains a subsequence that
converges to the fixed point. By compactness, assume that there exists a subsequence xnk

that converges to a point z ̸= x̄. Consider the real-valued sequence yn = d(xn, xn+1). Then

yn+1 = d(xn+1, xn+2) = d(F (xn), F (xn+1)) ≤ d(xn, xn+1) = yn.

Hence (yn)n∈N is monotone decreasing and non-negative and we conclude that there exists a
limit ȳ = limn→+∞ yn. Hence

ȳ = lim
k→+∞

ynk+1 = lim
k→+∞

d(xnk+1, F (xnk+1)) = lim
k→+∞

d(F (xnk
), F (F (xnk

)))

= d(F (z), F (F (z))) < d(z, F (z)) = lim
k→+∞

d(xnk
, F (xnk

)) = lim
k→+∞

ynk
= ȳ,

which yields a contradiction.

Ex 12.2 (Schaefer’s fixed point theorem)
Let X be a Banach space and F : X → X be continuous such that F (B) is compact for every
bounded set B ⊂ X. Assume further that there exists R > 0 such that

{x ∈ X : x = λF (x) for some λ ∈ [0, 1]} ⊂ BR(0).

Show that F has a fixed point.
Hint: Define the projection operator pR : X → BR(0) by pR(x) = x on BR(0) and pR(x) = R x

|x|
otherwise and consider the map FR = pR ◦F . Apply Schauder’s fixed point theorem on a suitable set.

Solution 12.2 : As suggested in the hint, we consider FR : BR(0) → BR(0) defined by
FR(x) = pR(F (x)). The map FR is continuous since pR and F are continuous. Note that

FR(BR(0)) is compact since the image of a precompact set under a continuous function is
precompact. 1 Moreover, BR(0) is closed and convex. By Schauder’s fixed point theorem the

1. Indeed, if A ⊂ X is precompact and f : X → Y is continuous, then f(A) is compact, hence closed (this
is true even if Y is just a Hausdorff space). Hence f(A) ⊂ f(A). Therefore f(A) is precompact since its closure
is a closed subset of a compact subset.



map FR has a fixed point x0 ∈ BR(0)). We claim that x0 is also a fixed point of F . This is
immediate if ∥F (x0)∥ ≤ R. Assume by contradiction that ∥F (x0)∥ > R. Then

x0 = pR(F (x0)) = R
F (x0)

∥F (x0)∥
=

R

∥F (x0)∥︸ ︷︷ ︸
∈[0,1]

F (x0) ∈ BR(0) ∩ ∂BR(0),

which gives a contradiction.

Ex 12.3 (Peano’s existence theorem for ODEs∗)
Let (t0, y0) ∈ R× Rn and consider the Cauchy problem

y′(t) = f(t, y(t)), y(t0) = y0. (1)

Assume that f : [−a + t0, a + t0] × BR(y0) → Rn is continuous. Show that there exists δ > 0
such that the Cauchy problem (1) has a solution y : [−δ + t0, δ + t0] → Rn.
Hint: Apply the Schauder fixed point theorem to the integral operator y 7→ y0 +

∫ t
t0
f(s, y(s)) ds. Use

the Arzelà–Ascoli theorem to show the compactness of the operator.

Ex 12.4 (Existence of solutions for a periodic BVP)
Let µ ∈ R \ {0} and J = [0, T ] for some T > 0.

a) Consider the linear first order periodic boundary value problem

u′(t) + µu(t) = f(t), t ∈ J, u(0) = u(T ),

where f ∈ C(J). Find the Green’s function g(t, s) such that

u(t) = [Gf ](t) :=

∫ T

0

g(t, s)f(s) ds, t ∈ J,

is a solution to this problem.

Hint: Consider the function y(t) = eµtu(t).

b) Show that G : C(J) → C(J) is continuous and maps bounded subsets of C(J) into relati-
vely compact sets.

c) Assume that f : J× R → R is continuous and has sublinear growth, i.e.

|f(t, u)| ≤ a(t) + b|u|α,

where a ∈ C(J), b > 0, and α ∈ [0, 1). Applying Schaefer’s theorem show that there exists
a solution to the following nonlinear first order periodic problem

u′(t) + µu(t) = f(t, u(t)), t ∈ J, u(0) = u(T ).

Solution 12.4 :
a) Assume that u solves the linear equation and let y(t) = eµtu(t), t ∈ J. Then y satisfies
y′(t) = eµtf(t) for t ∈ J, with y(T ) = eµTy(0). Thus, integrating the differential identity

y(t) = y(0) +

∫ t

0

eµsf(s)ds



and using this expression for t = T together with the boundary relation we get

y(0) =
1

eµT − 1

∫ T

0

eµsf(s)ds.

In consequence

u(t) = e−µty(t) =
1

1− e−µT

[ ∫ T

t

e−µ(T+t−s)f(s) ds+

∫ t

0

e−µ(t−s)f(s) ds
]
,

which can be succinctly written as

u(t) =

∫ T

0

g(t, s)f(s)ds, t ∈ J where g(t, s) =
1

1− e−µT

{
e−µ(t−s), 0 ≤ s ≤ t ≤ T,

e−µ(T+t−s), 0 ≤ t < s ≤ T.

b) To analyze the operator G, one can use the upper formula with two integrals, which have
dependence on t also in the integration limits, or the lower representation via the Green’s
function g(t, s), which has a jump discontinuity on the diagonal s = t of size e−µT . Here, we
proceed with the latter to illustrate that the integral operators with bounded discontinuous
kernels (at least on a null set in R2) can be still well-defined and compact.

Because g is bounded, the sup-norm ∥g∥∞ on J × J is finite. Fix t0 ∈ J and for ε > 0 let us
denote Dε = {s ∈ J : |t0 − s| < ε}. Then if v ∈ C(J), for any t ∈ J we can write

∣∣[Gv](t0)− [Gv](t)
∣∣ ≤ ∫ T

0

|g(t0, s)− g(t, s)| ds · ∥v∥C(J)

≤
(∫

J\Dε

|g(t0, s)− g(t, s)| ds+ 2∥g∥∞ ε
)
· ∥v∥C(J)

Since g is continuous on Dε × (J \Dε), thus uniformly continuous, and ε can be made arbitrary
small, Gv ∈ C(J). That G is continuous as an operator on C(J) follows from

∥Gv∥C(J) ≤ ∥g∥∞ ∥v∥C(J),

for any v ∈ C(J). The last inequality implies also that if Φ ⊂ C(J) is bounded, we have

sup{∥Gv∥C(J) : v ∈ Φ} < ∞.

Additionally, taking the supremum over Φ in the preceding estimate we arrive at

sup
v∈Φ

∣∣[Gv](t0)− [Gv](t)
∣∣ ≤ (∫

J\Dε

|g(t0, s)− g(t, s)| ds+ 2∥g∥∞ ε
)
· sup

v∈Φ
∥v∥C(J),

and invoking the uniform continuity of g on Dε × (J \ Dε) once more, we see that G(Φ) is
equicontinuous. By the Arzela-Ascoli theorem, G(Φ) has compact closure.

c) Let us denote
u 7→ N(u) : N(u)(t) = f(t, u(t)), t ∈ J

the nonlinear Nemytski (superposition) operator. Because f is continuous, N : C(J) → C(J)
and N maps bounded sets into bounded ones. To verify the latter statement, take any bounded
Φ ⊂ C(J) and let K = supv∈Φ ∥v∥C(J). Then, f is bounded on J× [−K,K], say by L, and so

∥N(v)∥C(J) ≤ L, for all v ∈ Φ.



According to a) and b), the nonlinear periodic problem can be equivalently written as a fixed
value problem (note that the periodic boundary is encoded in the operator G)

u = [G ◦N ](u), u ∈ C(J).

From the preceding, we know that F = G◦N is continuous on C(J) and maps bounded subsets
of C(J) into relatively compact sets. It remains to establish the a priori bound on the solutions
to

u = λF (u), λ ∈ [0, 1]. (⋆)

If u is the solution to (⋆), then for t ∈ J we have that

|u(t)| ≤ λ

∫ T

0

|g(t, s)|
∣∣[N(u)](s)

∣∣ ds ≤ ∥g∥∞
∫ T

0

|a(s)|+ b|u(s)|α ds.

Therefore, there are constants a∗, b∗ > 0 such that

∥u∥C(J) ≤ a∗ + b∗∥u∥αC(J).

Taking into account that 0 ≤ α < 1, we can conclude that there exist a constant C > 0 such
that ∥u∥C(J) ≤ C for any solution to (⋆) with λ ∈ [0, 1]. By Schaefer’s theorem we obtain the
existence of a fixed point for F .


